ARL-TN-0912 e Sep 2018

ARL

US Army Research Laboratory

Multi-Source Information Amalgamation
Prototype: A Fuzzy Logic Approach

by Drew Kogon, John Richardson, and Timothy Hanratty

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TN-0912 e Sep 2018

ARL

US Army Research Laboratory

Multi-Source Information Amalgamation
Prototype: A Fuzzy Logic Approach

by John Richardson and Timothy Hanratty
Computational and Information Sciences Directorate, ARL

Drew Kogon
University of Southern California, Los Angeles, CA

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE o AT

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
September 2018 Technical Note 1 July 2018-17 August 2018
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Multi-Source Information Amalgamation Prototype: A Fuzzy Logic Approach

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Drew Kogon, John Richardson, and Timothy Hanratty

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Research Laboratory
ATTN: RDRL-CII-T ARL-TN-0912

Aberdeen Proving Ground, MD 21005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

As part of its ongoing research into the calculation of the value of information, the US Army Research Laboratory has
expanded its single source Fuzzy Associative Memory model. The original model only accounted for a single source of data
and calculated value based on the parameters of the data. The new model accounts for multi-source data and considers the
relationship (supporting or conflicting) between the data when calculating value. This report outlines a software
implementation for calculating value in the multi-source model.

15. SUBJECT TERMS
Information amalgamation, fuzzy logic, Fuzzy Associative Memory, value of information, multi-source intelligence

17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF OF Timothy H

ABSTRACT PAGES imothy Hanratty
a. REPORT b. ABSTRACT c. THIS PAGE UU 38 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified (410) 278-3084

Standard Form 298 (Rev. 8/98;
Prescribed by ANSI Std. Z39.18

Contents

List of Figures
1. Introduction
2. Background: Single-Source Vol Model

3. Multi-Source Architecture
3.1 Step 1: Applicability Score Calculation
3.2 Step 2: Cognitive Group Membership Scoring
3.3 Step 3: Merging the Information Scores
3.4 Step 4: Final Calculations and Contextual Vol

4. Conclusion and Future Directions

5. References

Appendix. Multi-Source Code

List of Symbols, Abbreviations, and Acronyms

Distribution List

Approved for public release; distribution is unlimited.
i

co oo ~ W

12

14

15

17

31

32

List of Figures

Fig. 1 Single-source VoI Modelccceiviiiiiiiee e
Fig. 2 Fuzzy rule base example (tactical)..........cccooevveieiieincic e,
Fig. 3 Multi-source architeCture OVErVIEWccccovveveiieeieerie e,
Fig. 4 Multi-source prototype eXample..........ccooeiriiniininniee e,
Fig. 5 Applicability Score calculationsccooeiiiiiiiinieneee e
Fig. 6 COG FAM ..ottt ettt

Approved for public release; distribution is unlimited.
1\

1. Introduction

Today, military operations are defined by myriad information sources that provide
an unprecedented volume, velocity, variety, and veracity of information not
attained in most other domains. Given this wealth of information, a primary
challenge for military commanders and their staff is separating the important
information from the routine (US Army Headquarters 2003; Gates 2010).
Calculating information importance, termed the value of information (Vol) metric,
is a daunting task that is highly context dependent, requiring humans to judge the
information’s value within a host of differing operational situations
(Alberts et al. 2001). The purpose of this report is to technically note the
programming task associated with the “Multi-Source Information Amalgamation
Prototype” (Hanratty et al. 2017a) completed during the summer of 2018.

2. Background: Single-Source Vol Model

A Fuzzy Associative Memory (FAM) model was chosen to construct the
single-source Vol system. A FAM is a k-dimensional table where each dimension
corresponds to one of the input universes of the rules. The i-th dimension of the
table is indexed by the fuzzy sets that comprise the decomposition of the i-th input
domain. Fuzzy if-then rules are represented within the FAM. While numerous
characteristics could be applicable to determining Vol, the features of source
reliability, information content, timeliness, and mission context were used as the
starting point to construct the single-source Vol system. More detailed descriptions
of the FAMs, the fuzzy rule bases, the domain decompositions, and other
implementation aspects of the prototype system can be found in Hammell et al.
(2012), Hanratty et al. (2013), Hanratty (2017), and Hanratty et al. (2017a, 2017b).
The architecture of the single-source Vol system is shown in Fig. 1.

Applicability Vol
Applicability Vol [
FAM FAM

Latency

Fig.1 Single-source Vol model

Approved for public release; distribution is unlimited.

1

Two inputs feed into the Applicability FAM: source reliability (SR) and
information content (IC); the output of this FAM is termed the information
applicability metric. Likewise, two inputs feed into the Vol FAM: one of these
(information applicability) is the output of the first FAM; the other input is the
information latency rating. The output of the second FAM, and the overall system
output, is the Vol metric.

The tactical version of the fuzzy rule base associated with the single-source Vol
system is depicted in Fig. 2. The row and column indices of each FAM define a
potential rule antecedent within the appropriate input domain. The number in each
cell represents the consequent value of the rule that is represented by the cell
indices.

Applicability |.l.!|'\|'|

™
-4
Information Applicabilicy

3 .23]

233 i35 i

YOI FAM

Fig.2 Fuzzy rule base example (tactical)

The output from the system is determined by the standard centroid defuzzification
strategy. That is, the degree to which each rule influences the overall output is
directly related to the degree to which its inputs match its antecedent fuzzy sets.
The degree of the i-th fuzzy rule, deg‘Ci , corresponding to inputs (X1, y1) is

degici = m|1i (X1)m|£ (Y1) 1)

where C ' is the output region of Rule i and m,, is the degree of membership of the
input in the input region of Rule i for the j-th component.

Approved for public release; distribution is unlimited.

2

The standard centroid defuzzification equation that is used to produce the overall
output from a set of inputs (X1, y1) is

k
> degy, , mid’
i=1

2. dege,
i=1

Y=)
3. Multi-Source Architecture
Figure 3 shows an overview of the multi-source Vol architecture. Depicted in the

shaded regions are the required extensions to the single-source in order to capture
multi-source information.

Report 1
SR
Applicability

FAM

applicability .o App
Conditional) — o
i':. ¥ > &ro >
Latency
L__ —

Vol Vo,
FAM —

(OpTempa)

Fig.3 Multi-source architecture overview

The new prototype adds two additional FAM operations:

« The Cognitive Group FAM (COG FAM) transforms the calculated
Applicability Score into one of the five cognitive groups.

« The Applicability Conditional Adjustment FAM, given two cognitive groups,
calculates the adjustment (higher for complementary or lower for
contradictory) to the Applicability Score of the original piece of information
by an amount commensurate to how well it complements or contradicts the
original premise.

The following subsections walk through the code execution for each step of the
multifaceted system. As an example, consider the situation illustrated by Fig. 4. In
this case, the analyst receives two pieces of information. The initial information has
an SR rating between D and C (denoted by C-), an IC rating valued at 3.5 (halfway

Approved for public release; distribution is unlimited.

3

between 3 and 4), and a latency valued as “recent”. The supplemental information,
on the other hand, is judged to totally support the initial information and is graded
with an SR of B+, an IC of 1.5, and a latency of “somewhat recent”.

p——
A1 7y A _ | |
Score 2 t - - 275 L -
2.75 | 5 W compouns|” n o -
I 4.25 ' 257 ol i w -
cGMemln:_nbp’ BRSO P T e + s N e
- p=N sl —
— == 775 |
> [
| |
App .
Score 4.71
Latency Contextual
Vol

R/SWR

Supplemental

Fig.4 Multi-source prototype example

3.1 Step 1: Applicability Score Calculation

Given the SR and IC for the initial and supplemental information, the first step
involves calculating their respective Applicability Scores. Utilizing the standard
centroid defuzzification strategies discussed in the previous section, the row and
column indices of each FAM define a rule’s antecedent within the input domain
and the number in each cell represents the consequent value of that rule. In this
case, as shown in Fig. 5, the source reliability of the initial information partially
matches the antecedents of two fuzzy sets, “C” and “D”, while the information
content input partially matches the fuzzy sets for “3” and “4”. Similarly, the
supplemental information matches the fuzzy sets associated with “A” and “B” and
“1” and “2”. Following Eq. 2, the output of each fuzzy rule is scaled by the degree
(membership) to which the antecedents match and result in scores of 2.75 for the
initial information and 7.75 for the supplemental information.

Approved for public release; distribution is unlimited.

4

Information Content

. 3.5
11_52 3774 5
2 A :
% B+ Emm 3 5 3
® B 7 6 = 4 2
z .
ﬂc_ I(I:II"""""I"g": 3 1
5 D 5 4 3 2 1
[=]
v
F 3 3 2 1 1

Fig.5 Applicability Score calculations

Listed below is the function for the Applicability Score calculation where the inputs
are SR and IC. Each value (supplemental and initial) is run through separately. This
allows flexibility in the number of supplemental scores.

1. public static double computeAPP(double SR, double IC) { //This is the functi

on of App Score calculation where: //SR represents Source Reliability //IC r
epresents Information Content

2 double VOI, APP, IC1_deg, IC2_deg, SR1_deg, SR2_deg;
3. double IC1, IC2, SR1, SR2;

4. double[][] APPFAM = {

5. {

6. 9.0, 7.0, 7.0, 5.0, 3.0
7. b A

8 8.0, 7.0, 6.0, 4.0, 2.0
9 oA

10. 7.0, 6.0, 3.0, 3.0, 1.0
11. }, {

12. 5.0, 4.0, 3.0, 2.0, 1.0
13. b {

14. 3.0, 2.0, 1.0, 1.0, 1.0
15. }

16. }s

17. int SRint = (int) Math.floor(SR);
18. int ICint = (int) Math.floor(IC);
19. if (SRint == 5) {

20. SR1 = 4;

21. SR2 = 5;

Approved for public release; distribution is unlimited

5

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43,

SR1_deg = 0.0;
SR2_deg = 1.0;
} else {
SR1 = SRint;
SR2 = SR1 + 1;
SR1_deg = (-1.0) * (SR - 1.0) + SRint;
SR2_deg = 1 - SR1_deg;
}
if (ICint == 5) {
IC1 = 4;
IC2 = 5;
IC1_deg = 0.0;
IC2_deg = 1.0;
} else {
IC1 = ICint;
IC2 = IC1 + 1;
IC1_deg = (-1.0) * (IC - 1.9) + ICint;
IC2_deg = 1 - IC1_deg;

} //This represents the calculation of the degree that each //value fal
1s into a cell within the //Information Content x Source Reliability Matrix
//(Applicability FAM)

APP = ((SR1_deg * IC1l_deg * APPFAM[(int)(SR1 - 1)][(int)(IC1 - 1)])) + (
SR1_deg * IC2_deg * APPFAM[(int)(SR1 - 1)][(int)(IC2 - 1)]) + (SR2_deg * IC1
_deg * APPFAM[(int)(SR2 - 1)][(int)(IC1 - 1)]) + (SR2_deg * IC2_deg * APPFAM
[(int)(SR2 - 1)][(int)(IC2 - 1)]);

return APP;

1

3.2 Step 2: Cognitive Group Membership Scoring

For the second step, the calculated Applicability Scores are applied to the COG
FAM to determine their membership among the cognitive groups. As can be seen
in Fig. 6, the initial information (2.75 Applicability Score) causes two rules to fire,
giving it a cognitive group membership of 4.25, and the supplemental information
(7.75 Applicability Score) causes two rules to fire, giving it a cognitive group
membership of 2.

Approved for public release; distribution is unlimited

6

Applicability Score

'SIBE?E 5 4 3. 2 1

122333;;\5

Fig.6 COGFAM

For this section, we execute the computation by treating the COG FAM as a 1-D
array and use the Applicability Scores to identify the index within the array.
Following this, we perform the appropriate membership degree to obtain an average
score. Outlined below is the function of “Cog Score” where APP represents the
Applicability Score calculated previously. Each value (supplemental and initial) is
run through the function separately. This allows flexibility in the number of
supplemental scores.

1. public static double computeCOG(double APP) { ///this section calculates the

Cognitive Group FAM of an APP score input to the one dimensional COG FAM //
Figure 8 of the paper

2. double cog_group_membership, diff;

3. double[] APP_SCORE = {

4. 5,5, 4, 3, 3, 3,2, 2,1

5. };

6. double index_initial_infoAPP = APP - 1; //This section gets the top end
of the index and the bottom end e.g App=3.2, bottom is 3, top is 4.

7. int top_idx = (int) Math.ceil(index_initial_infoAPP);

8. int bott_idx = (int) Math.floor(index_initial_infoAPP); //if the value i
s the same in both indexes, then there's no point in finding a degree

9. if (APP_SCORE[(int) top_idx] == APP_SCORE[(int) bott_idx]) {

10. cog_group_membership = APP_SCORE[(int) top_idx];

11. } else { //but if it isn't the same, need to find new value

12. diff = APP_SCORE[(int) bott_idx] - APP_SCORE[(int) top_idx]; //this

line below takes the floor score and adds the product of the difference scor
e (almost certainly 1) and the inverse of the values to the right of the dec
imal point //in other words if the app score is 2.75, it takes 5-

4=1 and multiplies by the difference of 3-

2.75 or .25, resulting in 4.25 as the correct score)

13. cog_group_membership = APP_SCORE[(int) top_idx] + (diff * ((float) t
op_idx - (float) index_initial_infoAPP));

14. }; //System.out.print("Cog group membership:"+ cog_group_membership);

15. return cog_group_membership;

16. };

Approved for public release; distribution is unlimited

7

3.3 Step 3: Merging the Information Scores

Now that we have obtained a Cognitive Group Membership for the Initial Statement
(4.25) and the Supplemental Statement (2), the scores are used to obtain an
Applicability Adjustment (APP ADJ) Score using one of four 5 x 5 Applicability
Conditional Adjustment FAM matrices: 1) Totally Supports, 2) Somewhat
Supports, 3) Somewhat Contradicts, and 4) Totally Contradicts.

Currently the code features a determiner variable that selects the appropriate APP
ADJ FAM matrix when indicated, but has been hard-coded to select the “Totally
Supports” APP ADJ FAM matrix.

Following is the function for the APP ADJ Score calculation where the output,
“final score”, represents the APP ADJ Score. The function takes three inputs:

« COG FAM for initial statement
« COG FAM for supplemental statement
« A determiner for APP ADJ FAM matrix selection

Similar to the previous step, we use the input scores as indices to locate the relevant
FAM values. CORE VALUES matrix represents a maximum of four cells from the
APP ADJ matrix that the two input scores cover. The function then collapses the
scores horizontally, reducing the dimensions to a single array before collapsing
vertically to obtain the final value. Since the APP ADJ matrices are not
one-directional or evenly distributed, our code identifies the direction of the core
values to ensure proper addition or subtraction of degree values.

1. ///////7/////now adding in the APP ADJI FAM///////////////////1///////] ///nee
d branching statements for the level of support to determine matrix values

2. public static double computeADJAPP(double cog _init, double cog_sup, int dete
rminer) { ///the determiner is an input for the data of the relevant FAM mat
rix

3. if (determiner == 1) { //this is totally supports version
4. double[][] APP_ADJIFAM = {

5. {.03, .04, .11, .04, .03

6. s A{

7. 1.60, .47, .71, .15, .35

8. ¥, A{

9, 1.82, 1.59, .95, .70, 1.12

10. 3 {

11. 2.67, 2.44, 1.61, 1.48, 1.05

Approved for public release; distribution is unlimited.

8

12. o

13. 3.78, 2.94, 1.93, .66, .58

14. }

15. }s

16. } else if (determiner == 2) { ///PLACEHOLDER //values needed for somewha
t supports

17. double[][] APP_ADIFAM = {

18. {.03, .04, .11, .04, .03

19. ¥ A{

20. 1.60, .47, .71, .15, .35

21. s A{

22. 1.82, 1.59, .95, .70, 1.12

23. ¥ A{

24, 2.67, 2.44, 1.61, 1.48, 1.05

25. s A{

26. 3.78, 2.94, 1.93, .66, .58

27. }

28. }s

29. } else if (determiner == 3) { ///PLACEHOLDER //values needed for somewha
t contradicts

30. double[][] APP_ADIFAM = {

31. {.03, .04, .11, .04, .03

32. {

33. 1.60, .47, .71, .15, .35

34. s A{

35. 1.82, 1.59, .95, .70, 1.12

36. To €

37. 2.67, 2.44, 1.61, 1.48, 1.05

38. s A{

39. 3.78, 2.94, 1.93, .66, .58

40. }

41. }s

42. } else if (determiner == 4) { ///PLACEHOLDER //values needed for totally

contradicts
43, double[][] APP_ADIFAM = {
a4, {.03, .04, .11, .04, .03

Approved for public release; distribution is unlimited

9

45.

46.

a47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

}s

¥

}s

¥

}s
} else {

1.

1.

2.

e

60, .47, .71, .15, .35

82, 1.59, .95, .70, 1.12

67, 2.44, 1.61, 1.48, 1.05

78, 2.94, 1.93, .66, .58

double[][] APP_ADJFAM = { ///PLACEHOLDER ///this is a placeholder st

atement

{.0

}s

¥

}s

¥

}s

3,

{

1.

{

.04, .11, .04, .e3

60, .47, .71, .15, .35

.82, 1.59, .95, .70, 1.12

.67, 2.44, 1.61, 1.48, 1.05

.78, 2.94, 1.93, .66, .58

}; /////Now that I have the matrix selected, it's time to take the two i

nputted COG values

double bott_idx_column, top_idx_column, top_idx_row, bott_idx_row, row_i
dx, col_idx, compos_1 = @, compos_2 = @; ///supplement value

cog_sup = cog_sup - 1; //initial cog value

cog_init =

top_idx_row

cog_init - 1; ///one value represents the row value and the o
ther the column in this new matrix

bott_idx_row

Math.ceil(cog init);

Math.floor(cog_init);

top_idx_column = Math.ceil(cog_sup);

bott_idx_column = Math.floor(cog_sup); ////this is the placeholder FAM w

e have on file.

double[][] APP_ADIFAM = {

Approved for public release; distribution is unlimited

10

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

lo1.

102.

103.

{.03, .04, .11, .04, .03

b A

1.60, .47, .71, .15, .35
3 {

1.82, 1.59, .95, .70, 1.12
b A

2.67, 2.44, 1.61, 1.48, 1.05
3 {

3.78, 2.94, 1.93, .66, .58

}

}; ///the core values are the maximum of 4 cells of the matrix that the
two scores cover.

double[][] CORE_VALUES = {

{

APP_ADJFAM[(int) bott_idx_row][(int) bott_idx_column], APP_ADJFA
M[(int) bott_idx_row][(int) top_idx_column]

oA

APP_ADJFAM[(int) top_idx_row][(int) bott_idx_column], APP_ADJFAM
[(int) top_idx_row][(int) top_idx_column]

}

}; ///now its time to simplify the 2x2 to make a 1x2 //these two lines g
ather the absolute value difference score between two cells in the matrix

double rowl_diff = Math.abs(CORE_VALUES[@][@] - CORE_VALUES[@][1]);

double row2_diff = Math.abs(CORE_VALUES[1][@] - CORE_VALUES[1][1]); //th
is is done because the direction is not linear for the tactical boxes so we
need to determine which direction to take (e.g. add or subtract) //the diffe
rence values from the main cell ///here we are taking the ceiling value of t
he row and subtracting it from the actual to get the inverse of it e.g. 3-
2.576= .434 which goes into the equation below for proper degree

if (CORE_VALUES[@][@] > CORE_VALUES[@][1]) {

compos_1 = CORE_VALUES[@][@] - rowl_diff * ((float) top_idx_column -
(float) cog_sup);

} else if (CORE_VALUES[@][@] < CORE_VALUES[®][1]) {

compos_1 = CORE_VALUES[@][@] + rowl_diff * ((float) top_idx_column
- (float) cog_sup);

} else if (CORE_VALUES[@][@] == CORE_VALUES[@][1]) { //this line is for
the lower dimension versions so if we dont get overlap on the first dimensi
on

compos_1 = CORE_VALUES[@][0];

} ////now we do the same process for the second row to get one value

Approved for public release; distribution is unlimited

11

104. if (CORE_VALUES[1][@] > CORE_VALUES[1][1]) {

105. compos_2 = CORE_VALUES[1][@] - row2_diff * ((float) top_idx_column
- (float) cog_sup);

106. } else if (CORE_VALUES[1][@] < CORE_VALUES[1][1]) {

107. compos_2 = CORE_VALUES[1][@] + row2_diff * ((float) top_idx_column
- (float) cog_sup);

108. } else if (CORE_VALUES[1][@] == CORE_VALUES[1][1]) {

109. compos_2 = CORE_VALUES[1][0];

110. } ///now onto the vertical integration stage where we take the two comp

osites, compos_1 and compos_2 and combine them for the score

111. double final_Score = @, fin_Diff = 0, ratio_multiplier = @; //this is t
he final difference between the two scores

112. fin_Diff = Math.abs(compos_1 - compos_2); //we need to know the ratio b
y which the cognitive score enters the second cell e.g. 3.75, the overlap is
.75

113. ratio_multiplier = 1 - (top_idx_row - cog_init); //here we need to know
the direction by which we include the difference ratio. It can either be su
btracted or added

114. if (compos_1 == compos_2) {

115. final_Score = compos_1;

116. } else if (compos_1 > compos_2) {

117. final_Score = compos_1 - ratio_multiplier * fin_Diff;
118. } else if (compos_1 < compos_2) {

119. final_Score = compos_1 + ratio_multiplier * fin_Diff;
120. }

121. return final_Score;

122. };

3.4 Step 4: Final Calculations and Contextual Vol

After obtaining the APP ADJ score (2.57), we retrieve the original APP score (2.75)
and create a composite APP score (2.57 + 2.75 = 5.32). Following is the function
for the final Vol score, where “VOI” represents the output score. The function takes
three inputs:

« APPcomposite: the composite APP ADJ score
« TIMinit: the initial latency score

« TIMsupp: the supplemental latency score

Approved for public release; distribution is unlimited

12

The two latency values are averaged to select the appropriate vertical index with
the APP ADJ composite score serving as the horizontal index. Our code currently
only executes from the Tactical Vol FAM since those were the only data available
at the time of this construction. However, future development should include a
tempo variable for selecting the other two Vol FAMs (Operational FAM and
Strategic FAM), which are now available. In our example, latency receives a score
of “Recent” and “Somewhat Recent”. Compiled, this results in a combined Latency
Score of 1.5. When combined with the APP ADJ Score of 5.32, our final result is a
Vol Score of 4.32.

1. public static double computeVOI(double APPcomposite, double TIM_ init, double

TIM_supp) {
2 double VOI, APP1_deg, APP2_deg, TIM1_deg, TIM2 deg, TIM;
3. double APP1, APP2, TIM1, TIM2;
4. TIM = Math.abs((TIM_init + TIM_supp) / 2);
5. int APPint = (int) Math.floor(APPcomposite);
6. int TIMint = (int) Math.floor(TIM);
7. double[][] VOIFAM = {
8. {
9, 2.33, 0.33, 0.0
10. b {
11. 3.0, 0.33, 0.0
12. }, {
13. 4.33, 1.0, 0.33
14. s {
15. 5.33, 1.33, 0.33
16. }, {
17. 6.33, 2.67, 0.33
18. b {
19. 7.0, 3.33, 0.67
20. }, {
21. 8.9, 4.33, 1.0
22. s {
23. 8.67, 5.33, 1.33
24. }, {
25, 9.33, 6.0, 1.67
26. }

Approved for public release; distribution is unlimited.

13

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

a47.

48.

49.

50.

51.

52.

4.

1
if (APPint ==

APP1

1]
o0
[

APP2

1]
(o)
[

APP1_deg
APP2_deg
} else {

APP1 = AP

APP2 = AP

APP1_deg
APP2_deg
}
if (TIMint ==

TIM1

1)
N
.

TIM2

1]
w
e

TIM1_deg
TIM2_deg
} else {

TIM1

TI

TIM2 TI

TIM1_deg
TIM2_deg

}

VOI = (APP1_d
(APP1_deg * TIM2

9) {

1.0;

Pint;
P1 + 1;

= (-1.0) * (APPcomposite - 1.0) + APPint;

1 - APP1_deg;

3) {

0.90;

1.0;

Mint;
M1 + 1;

= (-1.0) * (TIM - 1.8) + TIMint;

1 - TIM1_deg;

eg * TIM1_deg * VOIFAM[(int)(APP1 - 1)][(int)(TIM1 - 1)]) +
_deg * VOIFAM[(int)(APP1 - 1)][(int)(TIM2 - 1)]) + (APP2_de

g * TIM1_deg * VOIFAM[(int)(APP2 - 1)][(int)(TIM1 - 1)]) + (APP2_deg * TIM2_

deg * VOIFAM[(int

return VOI;

Y(APP2 - 1)][(int)(TIM2 - 1)]);

Conclusion and Future Directions

Future work should incorporate the Strategic Vol and Operational Vol FAMs into
this program. Pending empirical data, values for the “Somewhat Relevant”,
“Somewhat Contradicts”, and “Totally Contradicts” Applicability Conditional
Adjustment FAM matrices should be included. Finally, we recommend a GUI
overlay for our current work for ease in testing and program usage.

Approved for public release; distribution is unlimited.

14

5. References

Alberts DS, Garstka JJ, Hayes RE, Signori DA. Understanding information age
warfare. Washington (DC): Office of the Assistant Secretary of Defense
(C3I/Command Control Research Program); 2001.

Gates RM. Quadrennial defense review report. Washington (DC): Department of
Defense; 2010.

Hammell RJ, Hanratty T, Heilman E. Capturing the value of information in
complex military environments: a fuzzy-based approach. Proceedings of the
2012 IEEE International Conference on Fuzzy Systems; 2012 June 10-15;
Brisbane, Australia. New York (NY): IEEE; c2003. p. 1-7.

Hanratty TP, Hammell 11 RJ, Bodt BA, Heilman EG, Dumer JC. Enhancing
battlefield situational awareness through fuzzy-based value of information.
46th Hawaii International Conference on System Sciences (HICSS); 2013 Jan
7-10; Maui, HI. New York (NY): IEEE; c2013. p. 1402-1411.

Hanratty T, Heilman E, Richardson J, Caylor J. A fuzzy-logic approach to
information amalgamation: a framework for human-agent collaboration.
Proceedings of the 2017 IEEE International Conference on Fuzzy Systems;
2017a July 9-12; Naples, Italy. New York (NY): IEEE; c2017. p. 1-6.

Hanratty T, Heilman E, Richardson J, Mittrick M, Caylor J. Determining the
perceived value of information when combining supporting and conflicting
data. In: Next-Generation Analyst V; vol 10207. Proceedings of SPIE
Defense + Security; 2017b May 3; Anaheim, CA. Bellingham (WA): SPIE.
doi: 10.1117/12.2264820.

Headquarters, Department of the Army. Mission command: command and control
of Army forces. Washington (DC): Headquarters, Department of the Army;
2003 Aug. Field Manual No.: FM 6-0.

Approved for public release; distribution is unlimited.

15

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

16

Appendix. Multi-Source Code

This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

import java.util.Random;

public class VoIFull {

private static int[][] cards = {

{

}s

1

}s

1

}s

1

}s

1

}s

1

}s

1

}s

1

}s

Approved for public release; distribution is unlimited.

18

36.

37.

38.

39.

40.

41.

42.

43,

44,

45.

46.

a47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

oA

oA

b A

oA

oA

oA

b A

oA

oA

oA

oA

oA

oA

oA

oA

oA

oA

oA

3,

Approved for public release; distribution is unlimited.

19

71. 3, 2, 1

72. b A
73. 3, 2, 2
74. b o
75. 3, 2, 3
76. b A
77. 3, 3,1
78. b o
79. 3, 3, 2
80. b A
81. 3, 3, 3
82. b o
83. 3, 4, 1
84. b A
85. 3, 4, 2
86. b o
87. 3, 4, 3
88. b A
89. 3, 5,1
9%. b o
91. 3, 5, 2
92. b A
93, 3, 5, 3
9., b o
95, 4, 1, 1
9%. b A
97. 4, 1, 2
98. b o
99, 4, 1, 3
100. b A
101. 4, 2, 1
102. b
103. 4, 2, 2
104. b A
105. 4, 2, 3

Approved for public release; distribution is unlimited.

20

106. b {

107. 4, 3, 1
108. }, {
109. 4, 3, 2
110. b, {
111. 4, 3, 3
112. b
113. 4, 4, 1
114. b, {
115. 4, 4, 2
116. }, {
117. 4, 4, 3
118. b, {
119. 4, 5, 1
120. }, {
121. 4, 5, 2
122. b, {
123. 4, 5, 3
124. b
125. 5, 1, 1
126. b, {
127. 5, 1, 2
128. }, {
129. 5, 1, 3
130. b, {
131. 5, 2, 1
132. b
133. 5, 2, 2
134. b, {
135. 5, 2, 3
136. }, {
137. 5, 3, 1
138. }, {
139. 5, 3, 2
140. b, {

Approved for public release; distribution is unlimited.

21

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

1

}s

1

}s

1

}s

1

public static void main(String[] args) {

String newlLine = System.getProperty("line.separator");

Random rand = new Random();

for (int i = @; i < cards.length; i++) {

double APP, VOI, APPsupp, cog_group_membership, cog_group_membe

rship_supp, composite_ADJ_Score;

ment

int z = rand.nextInt(cards.length - 1) + 0;

double SR = cards[i][@];

double IC

cards[i][1];
double TIM = cards[i][2];

double SRsupp

cards[z][@];
double ICsupp = cards[z][1];
double TIMsupp = cards[z][2];

APP = computeAPP(SR, IC); //random int generator for the supple

APPsupp = computeAPP(SRsupp, ICsupp);
cog_group_membership = computeCOG(APP);
cog_group_membership_ supp = computeCOG(APPsupp);

composite_ADJ_Score = computeADJAPP(cog_group_membership, cog_ g

roup_membership_supp, 1);

VOI = computeVOI(APP + composite_ADJ_Score, TIM, TIMsupp);

Approved for public release; distribution is unlimited

22

174. System.out.print("I= " + i + newLine + "APP: " + APP + ", [" +
SR+ "," + IC + "," + TIM + "]" + newLine + "Supplemental APP: " + APPsupp +
", [" + SRsupp +

+ ICsupp + "," + TIMsupp + "]" + newLine);

3
175. System.out.print("Cog Score " + cog_group_membership + newlLine
+ "Cog Supplement Score: " + cog_group_membership_supp + newlLine + "Adjusted

Score: " + composite_ADJ_Score + newlLine);
176. System.out.print("VOI Final: " + VOI + newlLine);
177. System.out.print(newLine);
178. }
179. }
180. public static double computeAPP(double SR, double IC) { //This is the f

unction of App Score calculation where: //SR represents Source Reliability /
/IC represents Information Content

181. double VOI, APP, IC1_deg, IC2_deg, SR1_deg, SR2_deg;
182. double IC1, IC2, SR1, SR2;

183. double[][] APPFAM = {

184. {

185. 9.9, 7.0, 7.0, 5.0, 3.0
186. 3, {

187. 8.0, 7.0, 6.0, 4.0, 2.0
188. }, {

189. 7.0, 6.0, 3.9, 3.9, 1.0
190. 3, {

191. 5.0, 4.0, 3.0, 2.0, 1.0
192. 3, {

193. 3.0, 2.0, 1.9, 1.0, 1.0
194. }

195. }s

196. int SRint = (int) Math.floor(SR);
197. int ICint = (int) Math.floor(IC);
198. if (SRint == 5) {

199. SR1 = 4;

200. SR2 = 5;

201. SR1_deg = 0.0;

202. SR2_deg = 1.0;

203. } else {

204 . SR1 = SRint;

Approved for public release; distribution is unlimited

23

205. SR2 = SR1 + 1;

206. SR1_deg = (-1.0) * (SR - 1.0) + SRint;
207. SR2_deg = 1 - SR1_deg;

208. }

209. if (ICint == 5) {

210. IC1 = 4;

211. IC2 = 5;

212. ICl_deg = 0.0;

213. I1C2 _deg = 1.0;

214. } else {

215. IC1 = ICint;

216. IC2 = IC1 + 1;

217. IC1_deg = (-1.0) * (IC - 1.0) + ICint;
218. IC2_deg = 1 - IC1_deg;

219. } //This represents the calculation of the degree that each //valu

e falls into a cell within the //Information Content x Source Reliability M
atrix //(Applicability FAM)

220. APP = ((SR1_deg * IC1l_deg * APPFAM[(int)(SR1 - 1)][(int)(IC1 - 1)])
) + (SR1_deg * IC2_deg * APPFAM[(int)(SR1 - 1)][(int)(IC2 - 1)]) + (SR2_deg
* IC1_deg * APPFAM[(int)(SR2 - 1)][(int)(IC1 - 1)]) + (SR2_deg * IC2_deg * A
PPFAM[(int)(SR2 - 1)][(int)(IC2 - 1)]);

221. return APP;
222. }
223. public static double computeCOG(double APP) { ///this section calculate

s the Cognitive Group FAM of an APP score input to the one dimensional COG F
AM //Figure 8 of the paper

224. double cog_group_membership, diff;

225. double[] APP_SCORE = {

226. 5, 5,4, 3,3,3,2,2,1

227. };

228. double index_initial_infoAPP = APP - 1; //This section gets the

top end of the index and the bottom end e.g App=3.2, bottom is 3, top is 4.

229. int top_idx = (int) Math.ceil(index_initial_infoAPP);

230. int bott_idx = (int) Math.floor(index_initial_infoAPP); //if th
e value is the same in both indexes, then there's no point in finding a degr
ee

231. if (APP_SCORE[(int) top_idx] == APP_SCORE[(int) bott_idx]) {

232. cog_group_membership = APP_SCORE[(int) top_idx];

233. } else { //but if it isn't the same, need to find new value

Approved for public release; distribution is unlimited

24

234. diff = APP_SCORE[(int) bott_idx] - APP_SCORE[(int) top_idx]
; //this line below takes the floor score and adds the product of the differ
ence score (almost certainly 1) and the inverse of the values to the right o
f the decimal point //in other words if the app score is 2.75, it takes 5-
4=1 and multiplies by the difference of 3-

2.75 or .25, resulting in 4.25 as the correct score)

235. cog_group_membership = APP_SCORE[(int) top_idx] + (diff * (
(float) top_idx - (float) index_initial_infoAPP));

236. }; //System.out.print("Cog group membership:"+ cog_group_member
ship);

237. return cog_group_membership;

238. Y //////7//////now adding in the APP ADI FAM//////////////11/1//]/]/
//// ///need branching statements for the level of support to determine matr
ix values

239. public static double computeADJAPP(double cog_init, double cog_sup, int
determiner) { ///the determiner is an input for the data of the relevant FA
M matrix

240. if (determiner == 1) { //this is totally supports version

241. double[][] APP_ADJFAM = {

242, {.03, .04, .11, .04, .03

243, 3, {

244. 1.60, .47, .71, .15, .35

245, s {

246. 1.82, 1.59, .95, .70, 1.12

247. 3, {

248. 2.67, 2.44, 1.61, 1.48, 1.05

249. {

250. 3.78, 2.94, 1.93, .66, .58

251. }

252. };

253, } else if (determiner == 2) { ///PLACEHOLDER //values needed for so
mewhat supports

254, double[][] APP_ADJIFAM = {

255. {.03, .04, .11, .04, .03

256. 3, {

257. 1.60, .47, .71, .15, .35

258. s {

259. 1.82, 1.59, .95, .70, 1.12

260. 3, {

261. 2.67, 2.44, 1.61, 1.48, 1.05

Approved for public release; distribution is unlimited

25

262. b {

263. 3.78, 2.94, 1.93, .66, .58

264. }

265. };

266. } else if (determiner == 3) { ///PLACEHOLDER //values needed for so
mewhat contradicts

267. double[][] APP_ADIFAM = {

268. {.03, .04, .11, .04, .03

269. {

270. 1.60, .47, .71, .15, .35

271. 3, {

272. 1.82, 1.59, .95, .70, 1.12

273. s {

274. 2.67, 2.44, 1.61, 1.48, 1.05

275. 3, {

276. 3.78, 2.94, 1.93, .66, .58

277. }

278. };

279. } else if (determiner == 4) { ///PLACEHOLDER //values needed for to
tally contradicts

280. double[][] APP_ADIFAM = {

281. {.03, .04, .11, .04, .03

282. {

283. 1.60, .47, .71, .15, .35

284, 3, {

285. 1.82, 1.59, .95, .70, 1.12

286. s {

287. 2.67, 2.44, 1.61, 1.48, 1.05

288. 3, {

289. 3.78, 2.94, 1.93, .66, .58

290. }

291. };

292. } else {

293. double[][] APP_ADJFAM = { ///PLACEHOLDER ///this is a placehold

er statement

294. {.03, .04, .11, .04, .03

Approved for public release; distribution is unlimited

26

295. b {

296. 1.60, .47, .71, .15, .35
297. }, {

298. 1.82, 1.59, .95, .70, 1.12

299. 3, {

300. 2.67, 2.44, 1.61, 1.48, 1.05

301. b {

302. 3.78, 2.94, 1.93, .66, .58

303. }

304. Jis

305. }; /////Now that I have the matrix selected, it's time to take the

two inputted COG values

306. double bott_idx_column, top_idx_column, top_idx_row, bott_idx_row,
row_idx, col_idx, compos_1 = @, compos_2 = @; ///supplement value

307. cog_sup = cog_sup - 1; //initial cog value

308. cog_init = cog_init - 1; ///one value represents the row value and
the other the column in this new matrix

309. top_idx_row = Math.ceil(cog_init);

310. bott_idx_row = Math.floor(cog_init);

311. top_idx_column = Math.ceil(cog_sup);

312. bott_idx_column = Math.floor(cog_sup); ////this is the placeholder
FAM we have on file.

313. double[][] APP_ADJIFAM = {

314. {.03, .04, .11, .04, .03

315. ¥ A{

316. 1.60, .47, .71, .15, .35

317. 3, {

318. 1.82, 1.59, .95, .70, 1.12

319. }s A{

320. 2.67, 2.44, 1.61, 1.48, 1.05

321. 3, {

322. 3.78, 2.94, 1.93, .66, .58

323. }

324. }; ///the core values are the maximum of 4 cells of the matrix that

the two scores cover.
325. double[][] CORE_VALUES = {
326. {

Approved for public release; distribution is unlimited

27

327. APP_ADJFAM[(int) bott_idx_row][(int) bott_idx_column], APP_
ADJFAM[(int) bott_idx_row][(int) top_idx_column]

328. }, {

329. APP_ADJFAM[(int) top_idx_row][(int) bott_idx_column], APP_A
DIFAM[(int) top_idx_row][(int) top_idx_column]

330. }

331. }; ///now its time to simplify the 2x2 to make a 1x2 //these two 1i
nes gather the absolute value difference score between two cells in the matr
ix

332. double rowl_diff = Math.abs(CORE_VALUES[@][@] - CORE_VALUES[@][1]);

333. double row2_diff = Math.abs(CORE_VALUES[1][@] - CORE_VALUES[1][1]);

//this is done because the direction is not linear for the tactical boxes s
o we need to determine which direction to take (e.g. add or subtract) //the
difference values from the main cell ///here we are taking the ceiling value

of the row and subtracting it from the actual to get the inverse of it e.g.

3-2.576= .434 which goes into the equation below for proper degree

334. if (CORE_VALUES[@][@] > CORE_VALUES[®][1]) {

335. compos_1 = CORE_VALUES[@][0] - rowl_diff * ((float) top_idx_col
umn - (float) cog_sup);

336. } else if (CORE_VALUES[@][@] < CORE_VALUES[@][1]) {

337. compos_1 = CORE_VALUES[@][@] + rowl_diff * ((float) top_idx_col
umn - (float) cog_sup);

338. } else if (CORE_VALUES[O][@] == CORE_VALUES[®][1]) { //this line is
for the lower dimension versions so if we dont get overlap on the first dim
ension

339. compos_1 = CORE_VALUES[@][@];

340. } ////now we do the same process for the second row to get one valu
e

341. if (CORE_VALUES[1][@] > CORE_VALUES[1][1]) {

342. compos_2 = CORE_VALUES[1][@] - row2_diff * ((float) top_idx_col
umn - (float) cog_sup);

343, } else if (CORE_VALUES[1][@] < CORE_VALUES[1][1]) {

344, compos_2 = CORE_VALUES[1][@] + row2_diff * ((float) top_idx_col
umn - (float) cog_sup);

345, } else if (CORE_VALUES[1][@] == CORE_VALUES[1][1]) {

346. compos_2 = CORE_VALUES[1][®];

347. } ///now onto the vertical integration stage where we take the two

composites, compos_1 and compos_2 and combine them for the score

348. double final_Score = @, fin_Diff = 0, ratio_multiplier = @; //this
is the final difference between the two scores

349. fin_Diff = Math.abs(compos_1 - compos_2); //we need to know the rat
io by which the cognitive score enters the second cell e.g. 3.75, the overla
p is .75

Approved for public release; distribution is unlimited

28

350. ratio_multiplier = 1 - (top_idx_row - cog_init); //here we need to
know the direction by which we include the difference ratio. It can either b
e subtracted or added

351. if (compos_1 == compos_2) {

352. final_Score = compos_1;

353. } else if (compos_1 > compos_2) {

354. final_Score = compos_1 - ratio_multiplier * fin_Diff;

355. } else if (compos_1 < compos_2) {

356. final_Score = compos_1 + ratio_multiplier * fin_Diff;

357. }

358. return final_Score;

359. };

360. public static double computeVOI(double APPcomposite, double TIM_ init, d
ouble TIM supp) {

361. double VOI, APP1_deg, APP2_deg, TIM1 deg, TIM2_deg, TIM;

362. double APP1, APP2, TIM1, TIM2;

363. TIM = Math.abs((TIM init + TIM_supp) / 2);

364. int APPint = (int) Math.floor (APPcomposite);

365. int TIMint = (int) Math.floor(TIM);

366. double[][] VOIFAM = {

367. {

368. 2.33, .33, 0.0

369. }s A{

370. 3.0, 0.33, 0.0

371. 3, {

372. 4.33, 1.0, 0.33

373. ¥ {

374. 5.33, 1.33, 0.33

375. 3, {

376. 6.33, 2.67, 0.33

377. ¥ A{

378. 7.0, 3.33, 0.67

379. ¥ A{

380. 8.0, 4.33, 1.0

381. 3, {

382. 8.67, 5.33, 1.33

Approved for public release; distribution is unlimited

29

383. b o

384. 9.33, 6.0, 1.67
385. }

386. };

387. if (APPint == 9) {

388. APP1 = 8;

389. APP2 = 9;

390. APP1_deg = 0.0;

391. APP2 deg = 1.0;

392. } else {

393. APP1 = APPint;

394. APP2 = APP1 + 1;

395. APP1_deg = (-1.9) * (APPcomposite - 1.0) + APPint;
396. APP2_deg = 1 - APP1_deg;

397. }

398. if (TIMint == 3) {

399. TIM1 = 2;

400. TIM2 = 3;

401. TIM1_deg = 0.0;

402. TIM2_deg = 1.0;

403. } else {

404. TIM1 = TIMint;

405. TIM2 = TIM1 + 1;

406. TIM1_deg = (-1.0) * (TIM - 1.0) + TIMint;

407. TIM2_deg = 1 - TIM1_deg;

408. }

409. VOI = (APP1_deg * TIM1_ deg * VOIFAM[(int)(APP1 - 1)][(int)(TIM1 - 1

)]) + (APP1_deg * TIM2_deg * VOIFAM[(int)(APP1 - 1)][(int)(TIM2 - 1)]) + (AP
P2_deg * TIM1_deg * VOIFAM[(int)(APP2 - 1)][(int)(TIM1 - 1)]) + (APP2_deg *
TIM2_deg * VOIFAM[(int)(APP2 - 1)][(int)(TIM2 - 1)]);

410. return VOI;

411. }

412. }

Approved for public release; distribution is unlimited

30

List of Symbols, Abbreviations, and Acronyms

1-D 1-dimensional

APP ADJ Applicability Adjustment
COG FAM Cognitive Group FAM
FAM Fuzzy Associative Memory
GUI graphical user interface

IC information content

SR source reliability

Vol value of information

Approved for public release; distribution is unlimited.

31

1 DEFENSE TECHNICAL
(PDF) INFORMATION CTR

DTIC OCA
2 DIR ARL
(PDF) IMAL HRA
RECORDS MGMT
RDRL DCL
TECH LIB
1 GOVT PRINTG OFC
(PDF) A MALHOTRA
3 ARL
(PDF) RDRLCHT
T HANRATTY
E HEILMAN
R HOBBS

Approved for public release; distribution is unlimited.

32

	List of Figures
	1. Introduction
	2. Background: Single-Source VoI Model
	3. Multi-Source Architecture
	3.1 Step 1: Applicability Score Calculation
	3.2 Step 2: Cognitive Group Membership Scoring
	3.3 Step 3: Merging the Information Scores
	3.4 Step 4: Final Calculations and Contextual VoI

	4. Conclusion and Future Directions
	5. References
	Appendix. Multi-Source Code0F(
	List of Symbols, Abbreviations, and Acronyms

